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1. Introduction 
Numerical simulation of electromagnetic scattering from a onedimensional perfectly 

conducting random surface is of interest, primarily for its application as a benchmark for 
evaluation of approximate theoretical models. Since rough surfaces are targets of infinite 
extent, approximations to the geometry or the formulation of the problem must be consid- 
ered to make the numerical solution tractable. The standard method to suppress the edge 
effects of a finite surface sample is the tapered illumination approximation [l]. This ap- 
proximation is numerically ineflicient because the elfective illuminated width of the sample 
surface is much smaller than the physical surface width. 

In this paper, theeffect of the edges of the surface samples is minimized by controlling the 
conductivity of the surface near each edge by adding an appropriate tapered resistive sheet. 
It is shown that the scattering simulation based on the new technique is more efficient than 
the standard method. A h  the backscattering coefficient predicted by the new technique is 
accurate for incidence angles as high as 80° while the angular validity range of the standard 
method is limited to 60°. 

2. Formulation 

The backscattering coefficient of a onedimensional conducting surface is obtained by a 
Monte Carlo simulation. The scattered fielh from N randomly generated sample surfaces 
are computed numerically, and the backscattering coefficient of the random surface is ob- 
tained from the statistics of the scattered fields. The surface current density J, on each 
random surface excited by an incident plane wave can be determined numerically by the 
method of moment (MOM). For hh-polarization the electric field integral equation (EFIE) 
is used for evaluation of the surface current density 

and for vu-polarization the magnetic field integral equation (HFIE) is used 

(2) - ii x Hi@) = --Je(jj)+ 1 iiii x {J.($) x VfHf'(k&-p'l)}dl' ,  2 

After a sample surface is discretized into M (= D/Az) cells, (1) and (2) are cast into matrix 
equations using pulse basis function and point matching technique. 
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Table 1: Roughness parameters used for the random surface generation 

Surface 
Name 
S-1 
S-2 
S-3 

ks kl X s 1 Ax D N Applicable 
metets Models 

0.21 2.2 0.24 0.0079 0.082 0.01 2.4 60 SPM 
0.62 4.6 0.24 0.0237 0.175 0.02 4.8 60 
1.04 7.4 0.24 0.0396 0.281 0.02 4.8 60 PO 

The surface current induced by a horizontally polarized incidence wave exhibits the fa- 
miliar singularity near the edges of the surface which has a significant effect on the backscat- 
tered field away from normal incidence. However, this is not the case for the vertically po- 
larized incidence wave. To suppress the singular behavior of the current a tapered resistive 
sheet is added to each end of the surface sample. Using the following boundary conditions 
for resistive sheets, 

[?I x E]? = 0, 6 x ( a x  E) = - R J ,  (3) 

the integral equation for the induced current becomes 

where R is the resistivity of the resistive sheet. 

Using trial and error the following tapered function was chosen: 
The resistivity profile, R(z), plays an important role in suppression of the edge current. 

where D is the width of the sample surface and DR is the width of the resistive section. For 
evaluation of the backscattering coefficient the induced current on the resistive sheet and 
narrow portions of the conducting surface near the edgea (DE) is discarded. 

3. Numerical Results 

To demonstrate the validity of the numerical simulation, an algorithm that generates 
the sample surfaces with desired statistics is developed using a standard approach 121. Table 
1 shows the roughness parameters of three different surfaces with Gaussian autocorrelation 
function. In this table h is wavenumber, X is the wave length, s is the rms height, l is the 
correlation length, Az is the sampling interval, D is the width of a sample surface, and 
N is the number of sample surface. The roughnesa parameters of S-1 and S-3 surfaces are 
in the validity regions of the small perturbation method (SPM) and the physical optics 
(PO) model, respectively. Each sample surface has the width of D with an extended region 
of DE and a resistive sheet of the length DR at each end aa shown in Fig. 1.  Both DE 
and DR are chosen to be 1X considering the trade-off between computation time and edge 
effect reduction. Even though currents on the whole regions are computed by the method 
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Figure 1: The extension of the random surface with resistive cards. 

of moments, the currents only on the region of consideration ( D )  are used for computation 
of the scattered field to avoid inclueion of disturbance caused by the resistive sheet. 

The backscattering coefficients of S-1 and S-3 are compared with the solutions of the 
small perturbation method (SPM) and the phy~cal  optics (PO) model, respectively. The 
backscattering coefficients of S-1 computed by this technique for vu- and hh-polarizations 
show an excellent agreement with the solution of the SPM as shown in Fig. 2(a). The 
numerical solution for S-3 also shows an excellent agreement with the PO prediction for 
incidence angles below 80' an shown in Fig. 2(b). The PO solution is obtained through 
exact evaluation of involved integrals [3]. It is shown that the numerical simulations agree 
very well with the theoretical models at two extreme roughness conditions, which provides 
assurance on its accuracy for surfaces with intermediate roughness conditions for which 
there exists no theoretical model. 

It is well known that the phase-difference statistics provides valuable information about 
the scattering mechanisms. Thh numerical technique is used to compute the co-polarized 
phase-difference statistics of the random surface S-2 (Table 1). The distribution of the co- 
polarized phase-difference (4= = - &,,) statistics at 50° is shown in Fig. 3(a). Figure 
3(b) shows that the standard deviation of the increases as the incidence angle increases. 
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Figure 2: The solution by the method of moments compared with (a) the small perturbation 
method for the random surface S-1 and (h) the physical optics solution for the random 
surface S-3 (Table 1). 
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Figure 3: The distribution of the phase difference between U;,, and U:" of the surface S-2 
(a) at 50' and (b) standard deviation of the distribution. 
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