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where Az is the sampling distance arfdy[] is the modified Bessel
-50 10 20 30 40 50 60 70 80 function of the second kind. Using the above equations, randomly
Incidence Angle (degrees) rough surfaces were generated. The profiles shown in Fig. 2 are
(b) for surfaces withs = 0.032 unit and! = 0.46 unit for Gaussian
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Fig. 1. Role of the surface correlation function of the surface-height profila
(@) comparison of the measured correlation function with Gaussian an
exponential functions and (b) the effect of the correlation function on the

backscattering coefficient. 1

1§tribution.

. SIMULATION RESULTS
Il. SIMULATION PROCEDURE The simulation procedure described in the preceding section was

In order to examine the surface characteristics of random surfacéed to generate four profiles of different rms heights and correlation

several randomly rough surfaces are generated by using the techni§gths- In each case, the profile was longer théd0!, wherel is
given in [2], as follows: the correlation length. These profiles were then used to determine

the following:

M a) relationships between the measurement precision associated
Z(k)= > WHXG+k) (1) with estimating the surface roughness parameters (rms height
j==M s and correlation length) and the length of the surface-height
profile L (by using only specific segment lengths of the total
where Z(k) is the surface height distributionY (i) is a Gaussian generated profile);
random deviateV (0, 1), andW(j) is the weighting function given ) improvement provided by averaging multiple segments on the
by estimates ofs and/;
W) = F*I[ F[C(j)]] @) C) trelatilozship between measurement precision and sampling in-
erval Ax.

whereC(j) is the correlation function and’[] denotes the Fourier
transform operator. For a surface characterized by a Gaussian ora
exponential correlation function, given respectively by '

_jA;r,?
l

rbependence on Segment Length

Fig. 3(a) shows the plots of two correlation functions calculated,
as given in [3], for the same surface, but on the basis of segments
of different lengths. It is clear from the plots that the 2000-unit-
long segment produces an exponential looking correlation function,

Ca(j) =5 exp
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Fig. 3. Effect of the profile segment length on (a) the correlation functions, (b) the corresponding roughness spectrums, and (c) the maximum errors
of the roughness spectrums.
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o
o

whereas the short segmerit = 50 unit) produces an oscillatory ments is equivalent to a result from a singl@0!/-long segment, in
function and it is accurate only for displacements shorter than ttiee sense of maximum error in the roughness spectrum.
correlation length (1.0 unit). The scattering coefficient is proportional For 40 50/-long segments of the same profile, the rms height
to the Fourier transform of the correlation function, which is théstandard deviation of surface height) and the correlation length
roughness spectrum, in the SPM model and the dominant term(displacementjAz, such that the normalized correlation function
the physical optics (PO) model is also proportional to the roughneSs(j)/s> = e~') are computed [3], as shown in Fig. 5(a) and (b).
spectrum. Therefore, the roughness spectrums corresponding toThe standard deviations of the rms height and the correlation length
correlation curves in Fig. 3(a) are computed and shown in Fig. 3(laxe 7.6% and 25.1% of the mean values, respectively, as shown in
The oscillatory behavior of the correlation curve for a profile segmehtg. 5(a) and (b). By repeating the process for many different profile
of length L = 50 unit gives the maximum error of 3.7 dB, comparingsegment lengths of the same profile, the standard deviatiorasd
with the exponential curve. In order to reduce a numerical and aliasing associated with the estimatessoénd! (as percentages of the true
error, a Gaussian-type window was used and the averaged maxinmernss andl) are calculated. The results are displayed in Fig. 6(a)
error of ten segments in the roughness spectrum was computed&od (b), which show that, ando,; decrease in an exponential-like
each segment length, as shown in Fig. 3(c). Fig. 3(c) shows tmaénner with segment length. To determines with o./5 < 0.1, it
the profile length should be at lea&t0! long to get a precision of is sufficient to use a single segmentl/ 40 length, but to estimate
+2 dB in the roughness spectrum, whéris the profile correlation I with o7/ < 0.1, the segment length has to be at least/2@0
length. length.

Fig. 4(a) and (b) show the improvement in measurement precisionAveraging multiple segments does not necessarily result in the
provided by averaging multiple equal-length segments of the sas@me correlation function, even when the total segment length is the
profile. Figs. 3(c) and 4(b) show that averaging fiM@-long seg- same. The shorter the segment length, the shorter the estimated value
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of the rms height and the correlation length, as shown in Fig. 7(ajultiple segments are measured and then the estimated values are
and (b). averaged. And the sampling distancer should be no more than
0.21 in length, wherd is the true correlation length of the surface.

B. Sampling Distance

The precision associated with the measurements of the roughness
parameters; and!/ is also dependent on the sampling distarice.
According to the results shown in Fig. 8, which displays the estimatedThe authors wish to thank Dr. F. Ulaby for his encouragement and
values ofl [in Fig. 8(a)] ands [in Fig. 8(b)], as a function ofAx his careful proofreading of this paper.

(measured in units dj for a segment 2000 unit in length,z: should
be no more than.2! to keep the error in estimatirigto within 5%
and no more than.5! for the same error bound when estimating
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