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Condition for Precise Measurement
of Soil Surface Roughness

Yisok Oh and Young Chul Kay

Abstract—Whereas it is well known that electromagnetic scattering by
a randomly rough surface is strongly influenced by the surface-height
correlation function, it is not clear as to how long a surface-height profile
is needed and at what interval it should be sampled to experimentally
quantify the correlation function of a real surface. This paper presents the
results of a Monte Carlo simulation conducted to answer these questions.
It was determined that, in order to measure the rms height and the
correlation length with a precision of�10%, the surface segment should
be at least40�l long and 200�l long, respectively, where�l is the mean (or
true) value of the surface correlation length. Shorter segment lengths can
be used if multiple segments are measured and then the estimated values
are averaged. The second part of the study focused on the relationship
between sampling interval and measurement precision. It was found that,
in order to estimate the surface roughness parameters with a precision of
�5%, it is necessary that the surface be sampled at a spacing no longer
than 0.2 of the correlation length.

I. INTRODUCTION

Extraction of soil moisture and vegetation biomass information
from imaging radar data has been a subject of intense interest for
a long time. However, the technique has not been very successful,
in part because of the complexity of natural soil surfaces, specif-
ically, the difficulty in estimating the surface roughness and the
inhomogeneity of the soil moisture. Furthermore, theoretical and
numerical models, while well suited for ideal rough surfaces, are
not easy to implement for natural soil surfaces. An attempt has been
made to retrieve soil moisture and surface roughness together from
polarimetric radar scattering data through the use of an inversion
algorithm [1]. Because the dynamic range of the backscattering
coefficient associated with the surface roughness is comparable to
or larger than that associated with the soil moisture, the surface
roughness should be estimated accurately for retrieving the soil
moisture with good accuracy. In this paper, the effect of surface
roughness on radar scattering from soil surfaces is discussed and the
results of a simulation study aimed at quantifying criteria for accurate
estimation of surface roughness parameters are presented.

According to experimental observations [1], whereas the height
distribution of natural soil surfaces is characterized by Gaussian
density functions, the measured correlation functions of the surface
height profiles more closely resemble exponential functions, as shown
in Fig. 1(a). The “measured” correlation function shown in Fig. 1(a)
was obtained by averaging more than 300 normalized correlation
functions measured from natural soil surfaces. The angular responses
of the vv-polarized backscattering coefficients for the exponential,
Gaussian, and the measured correlation functions were computed and
are shown in Fig. 1(b) for a surface withs = 0:01 m, l = 0:1 m,
and "r = (10; 2) at f = 1:5 GHz by using the small perturbation
method (SPM), wheres is the rms height andl is the correlation
length. The large difference in trend between the exponential and
Gaussian curves, particularly in the higher angular range, shows
the importance of the shape of the correlation function on the
backscattering coefficient.
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(a)

(b)

Fig. 1. Role of the surface correlation function of the surface-height profile.
(a) comparison of the measured correlation function with Gaussian and
exponential functions and (b) the effect of the correlation function on the
backscattering coefficient.

II. SIMULATION PROCEDURE

In order to examine the surface characteristics of random surfaces,
several randomly rough surfaces are generated by using the technique
given in [2], as follows:

Z(k) =

M

j=�M

W (j)X(j + k) (1)

whereZ(k) is the surface height distribution,X(i) is a Gaussian
random deviateN(0; 1), andW (j) is the weighting function given
by

W (j) = F
�1

F [C(j)] (2)

whereC(j) is the correlation function andF [ ] denotes the Fourier
transform operator. For a surface characterized by a Gaussian or an
exponential correlation function, given respectively by

CG(j) = s
2
exp �

j�x

l

2

Fig. 2. Surface profiles generated for both a Gaussian and an exponential
correlation function.

and

Ce(j) = s
2
exp �

jjj�x

l
(3)

the corresponding weighting functions are given by

WG(i) =
2�x
p
�l

1=2

s exp �2
i�x

l

2

and

We(i) =

p
2�x

�
p
l

sK0

i�x

l
(4)

where�x is the sampling distance andK0[ ] is the modified Bessel
function of the second kind. Using the above equations, randomly
rough surfaces were generated. The profiles shown in Fig. 2 are
for surfaces withs = 0:032 unit and l = 0:46 unit for Gaussian
and exponential correlation functions, both with a Gaussian height
distribution.

III. SIMULATION RESULTS

The simulation procedure described in the preceding section was
used to generate four profiles of different rms heights and correlation
lengths. In each case, the profile was longer than1000l, wherel is
the correlation length. These profiles were then used to determine
the following:

a) relationships between the measurement precision associated
with estimating the surface roughness parameters (rms height
s and correlation lengthl) and the length of the surface-height
profile L (by using only specific segment lengths of the total
generated profile);

b) improvement provided by averaging multiple segments on the
estimates ofs and l;

c) relationship between measurement precision and sampling in-
terval �x.

A. Dependence on Segment Length

Fig. 3(a) shows the plots of two correlation functions calculated,
as given in [3], for the same surface, but on the basis of segments
of different lengths. It is clear from the plots that the 2000-unit-
long segment produces an exponential looking correlation function,
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(a) (b)

(c)

Fig. 3. Effect of the profile segment length on (a) the correlation functions, (b) the corresponding roughness spectrums, and (c) the maximum errors
of the roughness spectrums.

(a) (b)

Fig. 4. Effect of averaging multiple segments on (a) the correlation functions and (b) the maximum errors in the roughness spectrums.
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(a) (b)

Fig. 5. Rms height (a) and correlation length (b) computed from each profile segment.

(a) (b)

Fig. 6. Standard deviations of (a) rms height and (b) correlation length, as a function of profile segment length.

whereas the short segment (L = 50 unit) produces an oscillatory
function and it is accurate only for displacements shorter than the
correlation length (1.0 unit). The scattering coefficient is proportional
to the Fourier transform of the correlation function, which is the
roughness spectrum, in the SPM model and the dominant term in
the physical optics (PO) model is also proportional to the roughness
spectrum. Therefore, the roughness spectrums corresponding to the
correlation curves in Fig. 3(a) are computed and shown in Fig. 3(b).
The oscillatory behavior of the correlation curve for a profile segment
of lengthL = 50 unit gives the maximum error of 3.7 dB, comparing
with the exponential curve. In order to reduce a numerical and aliasing
error, a Gaussian-type window was used and the averaged maximum
error of ten segments in the roughness spectrum was computed for
each segment length, as shown in Fig. 3(c). Fig. 3(c) shows that
the profile length should be at least200l long to get a precision of
�2 dB in the roughness spectrum, wherel is the profile correlation
length.

Fig. 4(a) and (b) show the improvement in measurement precision
provided by averaging multiple equal-length segments of the same
profile. Figs. 3(c) and 4(b) show that averaging five50l-long seg-

ments is equivalent to a result from a single100l-long segment, in
the sense of maximum error in the roughness spectrum.

For 40 50l-long segments of the same profile, the rms height
(standard deviation of surface height) and the correlation length
(displacementj�x, such that the normalized correlation function
Ce(j)=s

2 = e�1) are computed [3], as shown in Fig. 5(a) and (b).
The standard deviations of the rms height and the correlation length
are 7.6% and 25.1% of the mean values, respectively, as shown in
Fig. 5(a) and (b). By repeating the process for many different profile
segment lengths of the same profile, the standard deviations�s and
�l, associated with the estimates ofs andl (as percentages of the true
means�s and�l) are calculated. The results are displayed in Fig. 6(a)
and (b), which show that�s and�l decrease in an exponential-like
manner with segment lengthL. To determines with �s=�s � 0:1, it
is sufficient to use a single segment 40l in length, but to estimate
l with �l=�l � 0:1, the segment length has to be at least 200l in
length.

Averaging multiple segments does not necessarily result in the
same correlation function, even when the total segment length is the
same. The shorter the segment length, the shorter the estimated value
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(a) (b)

Fig. 7. Dependence on the profile segment lengthL when calculating (a) averaged rms height and (b) averaged correlation length.

(a) (b)

Fig. 8. Effect of the sampling distance for (a) correlation lengthl and (b) rms heights.

of the rms height and the correlation length, as shown in Fig. 7(a)
and (b).

B. Sampling Distance

The precision associated with the measurements of the roughness
parameterss and l is also dependent on the sampling distance�x.
According to the results shown in Fig. 8, which displays the estimated
values ofl [in Fig. 8(a)] ands [in Fig. 8(b)], as a function of�x

(measured in units of�l) for a segment 2000 unit in length,�x should
be no more than0:2�l to keep the error in estimatingl to within�5%
and no more than0:5�l for the same error bound when estimatings.

IV. CONCLUSION

Based on the simulation study involving the generation of random
surfaces, it is recommended that, in order to measure the rms height
and the correlation length of a rough surface with a precision of about
�10% of their mean values, the surface segment length should be
40�l and200�l, respectively. Shorter segments lengths can be used if

multiple segments are measured and then the estimated values are
averaged. And the sampling distance�x should be no more than
0:2�l in length, where�l is the true correlation length of the surface.
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